Parameter-efficient fine-tuning (PEFT) methods can adapt large language models to downstream tasks by training a small amount of newly added parameters. In multi-task settings, PEFT adapters typically train on each task independently, inhibiting transfer across tasks, or on the concatenation of all tasks, which can lead to negative interference. To address this, Polytropon (Ponti et al.) jointly learns an inventory of PEFT adapters and a routing function to share variable-size sets of adapters across tasks. Subsequently, adapters can be re-combined and fine-tuned on novel tasks even with limited data. In this paper, we investigate to what extent the ability to control which adapters are active for each task leads to sample-efficient generalization. Thus, we propose less expressive variants where we perform weighted averaging of the adapters before few-shot adaptation (Poly-mu) instead of learning a routing function. Moreover, we introduce more expressive variants where finer-grained task-adapter allocation is learned through a multi-head routing function (Poly-S). We test these variants on three separate benchmarks for multi-task learning. We find that Poly-S achieves gains on all three (up to 5.3 points on average) over strong baselines, while incurring a negligible additional cost in parameter count. In particular, we find that instruction tuning, where models are fully fine-tuned on natural language instructions for each task, is inferior to modular methods such as Polytropon and our proposed variants.
translated by 谷歌翻译
由能够连接和交换消息的越来越多的移动设备而激励,我们提出了一种旨在模拟和分析网络中节点移动性的方法。我们注意到文献中的许多现有解决方案依赖于直接在节点联系人图表上计算的拓扑测量,旨在捕获节点在有利于原型设计,设计和部署移动网络的连接和移动模式方面的重要性。但是,每个措施都具有其特异性,并且无法概括最终随时间变化的节点重要性概念。与以前的方法不同,我们的方法基于节点嵌入方法,该方法模型和推出在保留其空间和时间特征的同时在移动性和连接模式中对节点的重要性。我们专注于基于一丝小组会议的案例研究。结果表明,我们的方法提供了提取不同移动性和连接模式的丰富表示,这可能有助于移动网络中的各种应用和服务。
translated by 谷歌翻译
Candidate axiom scoring is the task of assessing the acceptability of a candidate axiom against the evidence provided by known facts or data. The ability to score candidate axioms reliably is required for automated schema or ontology induction, but it can also be valuable for ontology and/or knowledge graph validation. Accurate axiom scoring heuristics are often computationally expensive, which is an issue if you wish to use them in iterative search techniques like level-wise generate-and-test or evolutionary algorithms, which require scoring a large number of candidate axioms. We address the problem of developing a predictive model as a substitute for reasoning that predicts the possibility score of candidate class axioms and is quick enough to be employed in such situations. We use a semantic similarity measure taken from an ontology's subsumption structure for this purpose. We show that the approach provided in this work can accurately learn the possibility scores of candidate OWL class axioms and that it can do so for a variety of OWL class axioms.
translated by 谷歌翻译
This paper proposes a question-answering system that can answer questions whose supporting evidence is spread over multiple (potentially long) documents. The system, called Visconde, uses a three-step pipeline to perform the task: decompose, retrieve, and aggregate. The first step decomposes the question into simpler questions using a few-shot large language model (LLM). Then, a state-of-the-art search engine is used to retrieve candidate passages from a large collection for each decomposed question. In the final step, we use the LLM in a few-shot setting to aggregate the contents of the passages into the final answer. The system is evaluated on three datasets: IIRC, Qasper, and StrategyQA. Results suggest that current retrievers are the main bottleneck and that readers are already performing at the human level as long as relevant passages are provided. The system is also shown to be more effective when the model is induced to give explanations before answering a question. Code is available at \url{https://github.com/neuralmind-ai/visconde}.
translated by 谷歌翻译
Heteroscedastic regression models a Gaussian variable's mean and variance as a function of covariates. Parametric methods that employ neural networks for these parameter maps can capture complex relationships in the data. Yet, optimizing network parameters via log likelihood gradients can yield suboptimal mean and uncalibrated variance estimates. Current solutions side-step this optimization problem with surrogate objectives or Bayesian treatments. Instead, we make two simple modifications to optimization. Notably, their combination produces a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart (i.e.~fitting the mean under squared error loss). For a wide variety of network and task complexities, we find that mean estimates from existing heteroscedastic solutions can be significantly less accurate than those from an equivalently expressive mean-only model. Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration. Lastly, we show how to leverage our method to recover the underlying heteroscedastic noise variance.
translated by 谷歌翻译
We propose a technique for learning single-view 3D object pose estimation models by utilizing a new source of data -- in-the-wild videos where objects turn. Such videos are prevalent in practice (e.g., cars in roundabouts, airplanes near runways) and easy to collect. We show that classical structure-from-motion algorithms, coupled with the recent advances in instance detection and feature matching, provides surprisingly accurate relative 3D pose estimation on such videos. We propose a multi-stage training scheme that first learns a canonical pose across a collection of videos and then supervises a model for single-view pose estimation. The proposed technique achieves competitive performance with respect to existing state-of-the-art on standard benchmarks for 3D pose estimation, without requiring any pose labels during training. We also contribute an Accidental Turntables Dataset, containing a challenging set of 41,212 images of cars in cluttered backgrounds, motion blur and illumination changes that serves as a benchmark for 3D pose estimation.
translated by 谷歌翻译
Computational pathology can lead to saving human lives, but models are annotation hungry and pathology images are notoriously expensive to annotate. Self-supervised learning has shown to be an effective method for utilizing unlabeled data, and its application to pathology could greatly benefit its downstream tasks. Yet, there are no principled studies that compare SSL methods and discuss how to adapt them for pathology. To address this need, we execute the largest-scale study of SSL pre-training on pathology image data, to date. Our study is conducted using 4 representative SSL methods on diverse downstream tasks. We establish that large-scale domain-aligned pre-training in pathology consistently out-performs ImageNet pre-training in standard SSL settings such as linear and fine-tuning evaluations, as well as in low-label regimes. Moreover, we propose a set of domain-specific techniques that we experimentally show leads to a performance boost. Lastly, for the first time, we apply SSL to the challenging task of nuclei instance segmentation and show large and consistent performance improvements under diverse settings.
translated by 谷歌翻译
Identifying anomalies has become one of the primary strategies towards security and protection procedures in computer networks. In this context, machine learning-based methods emerge as an elegant solution to identify such scenarios and learn irrelevant information so that a reduction in the identification time and possible gain in accuracy can be obtained. This paper proposes a novel feature selection approach called Finite Element Machines for Feature Selection (FEMa-FS), which uses the framework of finite elements to identify the most relevant information from a given dataset. Although FEMa-FS can be applied to any application domain, it has been evaluated in the context of anomaly detection in computer networks. The outcomes over two datasets showed promising results.
translated by 谷歌翻译
Supervised machine learning-based medical image computing applications necessitate expert label curation, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset of available image data for expert annotation, for label-efficient model training. We develop a controller neural network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain, within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different institutes and/or requires segmentation of different organs or structures within the abdomen. We present experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric yields converging segmentation accuracy for the novel class of kidney, unseen in training, using between approximately 40\% to 60\% of labels otherwise required with other heuristic or random prioritisation metrics. For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement of 22.6\% and 10.2\% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared to random prioritisation and alternative active sampling strategies.
translated by 谷歌翻译
Image quality assessment (IQA) forms a natural and often straightforward undertaking for humans, yet effective automation of the task remains highly challenging. Recent metrics from the deep learning community commonly compare image pairs during training to improve upon traditional metrics such as PSNR or SSIM. However, current comparisons ignore the fact that image content affects quality assessment as comparisons only occur between images of similar content. This restricts the diversity and number of image pairs that the model is exposed to during training. In this paper, we strive to enrich these comparisons with content diversity. Firstly, we relax comparison constraints, and compare pairs of images with differing content. This increases the variety of available comparisons. Secondly, we introduce listwise comparisons to provide a holistic view to the model. By including differentiable regularizers, derived from correlation coefficients, models can better adjust predicted scores relative to one another. Evaluation on multiple benchmarks, covering a wide range of distortions and image content, shows the effectiveness of our learning scheme for training image quality assessment models.
translated by 谷歌翻译